Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Biochimie ; 221: 27-37, 2024 Jan 13.
Article En | MEDLINE | ID: mdl-38224902

The light-induced transthylakoid membrane potential (ΔΨm) can function as a driving force to help catalyzing the formation of ATP molecules, proving a tight connection between ΔΨm and the ATP synthase. Naturally, a question can be raised on the effects of altered functioning of ATP synthases on regulating ΔΨm, which is attractive in the area of photosynthetic research. Lots of findings, when making efforts of solving this difficulty, can offer an in-depth understanding into the mechanism behind. However, the functional network on modulating ΔΨm is highly interdependent. It is difficult to comprehend the consequences of altered activity of ATP synthases on adjusting ΔΨm because parameters that have influences on ΔΨm would themselves be affected by ΔΨm. In this work, a computer model was applied to check the kinetic changes in polarization/depolarization across the thylakoid membrane (TM) regulated by the modified action of ATP synthases. The computing data revealed that under the extreme condition by numerically "switching off" the action of the ATP synthase, the complete inactivation of ATP synthase would markedly impede proton translocation at the cytb6f complex. Concurrently, the KEA3 (CLCe) porter, actively pumping protons into the stroma, further contributes to achieving a sustained low level of ΔΨm. Besides, the quantitative consequences on every particular component of ΔΨm adjusted by the modified functioning of ATP synthases were also explored. By employing the model, we bring evidence from the theoretical perspective that the ATP synthase is a key factor in forming a transmembrane proton loop thereby maintaining a propriate steady-state ΔΨm to meet variable environmental conditions.

2.
Poult Sci ; 103(1): 103220, 2024 Jan.
Article En | MEDLINE | ID: mdl-37980748

The eggshell color of avian species is an important trait that is predominantly determined by the pigments biliverdin and protoporphyrin. Various factors affect eggshell pigment deposition and coloration; however, the underlying mechanisms remain unclear. We analyzed the hepatic transcriptomes and metabolomes of Changshun green-shell hens laying dark green and light green eggs to investigate the potential role of the liver in regulating the intensity of the green eggshell color. In total, 350 differentially expressed genes and 211 differentially altered metabolites were identified. Gene set enrichment analysis revealed that the enriched pathways and Gene Ontology (GO) terms were mainly associated with energy, immunity, and nutrient metabolism. Metabolite set enrichment analysis revealed that the enriched pathways were mainly associated with amino acid, vitamin, bile acid, and lipid metabolism. Moreover, gene-metabolite interaction network analysis revealed 1 subnetwork. Most genes and metabolites in this subnetwork were determined to be related to melanin metabolism and transport. In conclusion, our results suggest that hepatic melanin metabolism and transport are critical for eggshell coloration. Six candidate genes (CDKN2B, DDC, PYCR1, ABCG5, SLC3A1, and P2RX2) and 7 candidate metabolites (serotonin, 5-hydroxyindoleacetic acid, ornithine, acetylcholine, L-tryptophan, D-ornithine, and ADP) were suggested to play important roles in this process. Meanwhile, this study suggests that changes in hepatic energy metabolism, immune status, antioxidation activity, nutrient availability, and bile acid synthesis can impair eggshell coloration.


Egg Shell , Transcriptome , Animals , Female , Egg Shell/physiology , Chickens/physiology , Melanins/genetics , Liver/metabolism , Metabolome , Bile Acids and Salts/metabolism , Ornithine/analysis , Ornithine/genetics , Ornithine/metabolism , Color
...